Wednesday, 20 April 2011

Perspectives

Perspective refers to the relationship of imaged objects in a photograph. This includes their relative positions and sizes and the space between them. In other words, perspective in the composition of a photograph is the way real three-dimensional objects are pictured in a photograph that has a two-dimensional plane. In photography, perspective is another illusion you use to produce photographs of quality composition. When you are making pictures, the camera always creates perspective.

Linear perspective


T
he human eye judges distance by the way elements within a scene diminish in size, and the angle at which lines and planes converge. This is called linear perspective. The distance between camera and subject and the lens focal length are critical factors affecting linear perspective. This perspective changes as the camera position or viewpoint changes. From a given position, changing only the lens focal length, and not the camera position, does not change the actual viewpoint, but may change the apparent viewpoint.

The use of different focal-length lenses in combination with different lens-to-subject distances helps you alter linear perspective in your pictures. When the focal length of the lens is changed but the lens-to-subject distance remains unchanged, there is a change in the image size of the objects, but no change in perspective. On the other hand, when the lens-to-subject distance and lens focal length are both changed, the relationship between objects is altered and perspective is changed. By using the right combination of camera-to-subject distance and lens focal length, a photographer can create a picture that looks deep or shallow. This feeling of depth or shallowness is only an illusion, but it is an important compositional factor.

Using a short-focal-length lens from a close camera-to-subject distance, or viewpoint, produces a picture with greater depth (not to be confused with depth of field) than would be produced with a standard lens. Conversely, using a long-focal-length lens from a more distant viewpoint produces a picture with less apparent depth.

Rectilinear perspective

Most lenses produce rectilinear perspective that are typical of what the human eye sees. This is to say that lines that are straight in the subject are reproduced straight in the picture. Most pictures are made with rectilinear lenses.

Fisheye lenses and the lenses used on panoramic cameras produce a false perspective. A panoramic lens produces panoramic or cylindrical perspective. In other words, all straight horizontal lines at the lens axis level are recorded as straight lines, and all other straight horizontal lines either above or below the lens axis level are reproduced as curved lines. The other false perspective is produced by a fisheye lens in which all straight lines in the subject are imaged as curved lines toward the edges of the picture.

Vanishing point perspective

In vision, lines that are parallel to each other give the sensation of meeting at vanishing points. When parallel lines, either horizontal or vertical, are perpendicular to the lens axis, the vanishing points are assumed to be at infinity. Other lines, those which are parallel to the lens axis, and all other parallel lines at all other angles to the lens axis meet at definable vanishing points. Thus lines that are parallel to the lens axis, or nearly parallel, start in the front of the picture and meet at vanishing points within the picture or at finite points outside the picture.

Height perspective

The place where the base of an object is located on the ground in a picture is a clue to its distance from the camera viewpoint; for example, in a landscape scene, the ground or ground plane rises toward the horizon. The higher up in the ground area of the picture (up to the horizon) that the base of an object is located, the further away it seems from the viewpoint and the greater its height perspective.

Overlap perspective

Another clue to distance in a photograph is overlap perspective. When subjects within the picture are on about the same line of sight, those objects closer to the camera viewpoint overlap more distant objects and partially hide them. It is obvious to the viewer that the partially obstructed object is behind the unobstructed object. This overlap is repeated many times within the picture and gives the viewer a sense of depth and a perception of the relative distance of objects.

No comments:

Post a Comment